Kinetic and Mechanistic Studies for Reactions of CF₃CH₂CHF₂ (HFC-245fa) Initiated by H-Atom Abstraction Using Atomic Chlorine

Junyi Chen,[†] Valerie Young,[‡] and Hiromi Niki[§]

Centre for Atmospheric Chemistry and Department of Chemistry, York University, 4700 Keele Street, North York, Ontario, Canada M3J 1P3

Hillel Magid*

Buffalo Research Laboratory, AlliedSignal, Inc., 20 Peabody Street, Buffalo, New York 14210 Received: November 8, 1996; In Final Form: January 28, 1997[®]

Kinetics and mechanisms of Cl atom initiated oxidation reactions of $CF_3CH_2CHF_2$ (HFC-245fa) were investigated by long-path FTIR spectroscopic methods at 297 ± 2 K. The Cl atoms initiated the reaction mainly via H-atom abstraction from the terminal carbon (\geq 95%) to produce a $CF_3CH_2CF_2$ radical. Subsequent reactions in 700 Torr of air produced CF_3CHO and CF_2O as the primary products. Secondary reactions of CF_3CHO with Cl atoms led to the formation of $CF_3C(O)OH$, CF_3OH , CO_2 , and CF_3OOOCF_3 in the experimental system. However, under atmospheric conditions, CF_3CHO would undergo a series of rapid oxidation and decomposition reactions ultimately leading to HF and CO_2 , and no long-lived organic decomposition products would be produced.

Introduction

Destruction of stratospheric ozone by chlorofluorocarbons (CFCs)¹ has led to an international agreement to replace CFCs with atmospherically acceptable alternatives. Hydrochlorof-luorocarbons (HCFCs) and hydrofluorocarbons (HFCs) have been developed as CFC alternatives because they can, to a large extent, be removed by tropospheric OH radicals. Thus, the alternatives have shorter lifetimes in the troposphere as well as lower ozone depletion potential (ODP) and global warming potential (GWP) values than those of CFCs. However, the tropospheric degradation of the alternatives, after initial hydrogen abstraction by OH radicals, will lead to new halogen-containing products, the atmospheric behavior of which may not be well-known. Thus, to assess the atmospheric acceptability of the alternatives, we need to understand their degradation mechanisms and product distributions.

There have been many studies of the atmospheric reaction mechanisms of HCFCs and HFCs after initial abstraction of hydrogen atoms.^{2–5} However, most of the studies were concerned with the degradation of HCFCs and HFCs containing one or two carbons. There are few experimental data available for larger HCFCs and HFCs. Presented here is the long-path FTIR spectroscopic kinetic and mechanistic study of the Cl atom initiated oxidation of CF₃CH₂CHF₂ (HFC-245fa) at 297 \pm 2K in 700 Torr of He, N₂, and air diluents. This molecule is being considered as a potential non-ozone-depleting replacement for CH₃CCl₂F (HCFC-141b) as a blowing agent for foam applications.^{6a–c}

Experimental Section

The details of the experimental facility and procedures have been described in our previous publications.⁷ In brief, a Pyrex glass cylinder (5 cm diameter, 50 cm long, 100 cm path length) surrounded by 6 UV fluorescent lamps (GE F30T8/BLB; 300 nm $< \lambda < 400$ nm) was used as the IR cell and photochemical reactor for experiments carried out in He and N₂; another Pyrex glass cylinder (30 cm diameter, 2 m long, 92 m path length) surrounded by 26 UV fluorescent lamps (GE F40T12/BLB; 300 nm $< \lambda < 400$ nm) was used as the IR cell and photochemical reactor for experiments carried out in the presence of O₂. Spectra were collected over the frequency range 500–4000 cm⁻¹ in 70 s at 0.125 cm⁻¹ resolution by co-adding 16 scans, using a Mattson FTIR spectrometer (Galaxy 4326C) with a KBr beamsplitter and a liquid N₂ cooled Hg–Cd–Te detector.

Cl atoms were generated by the UV irradiation (300 nm $< \lambda$ < 400 nm) of Cl₂ (Aldrich, 99+%). N₂ (O₂ < 3 ppm, total hydrocarbon < 1 ppm), He (O₂ < 0.5 ppm) and synthetic air (total hydrocarbon < 0.1 ppm) were obtained from Liquid Carbonic Inc. Reactant (CF₃CH₂CHF₂, 99%) was supplied by the Buffalo Research Laboratory of AlliedSignal. No IR peaks of impurities were observed in the reactant. CF₃CHO was synthesized by hydrolyzing CF₃CH(OH)OCH₃ (PCR, 99%) in a mixture of H₂SO₄ (Aldrich, 95.5%)/P₂O₅ (Aldrich, 97%). CF₃C(O)OH (99.9%) and CF₃CH₂CClF₂ (97%) were obtained from PCR and the Buffalo Research Laboratory of AlliedSignal, respectively.

Reactant and product species reported in this work, unless otherwise specified, were identified and quantified by reference to quantitative IR spectra of pure compounds previously collected in our laboratory. The concentration uncertainties of these reference spectra are estimated to be less than 5%, except for CF₃C(O)OH. Because of the formation of the dimer, (CF₃C-(O)OH)₂, and because the necessity of separating the dimer adds uncertainty to the reference spectrum, the concentration uncertainty of the reference spectrum of CF₃C(O)OH is estimated to be 10%.

Results and Discussion

1. Kinetic Study. The rate constant for the reaction of Cl atom with $CF_3CH_2CHF_2$ was determined from the decay rates

^{*} Corresponding author. E-mail: hillel.magid@alliedsignal.com.

[†] Present address: NU-Pharm Inc, 380 Elgin Mills East, Richmond Hill, Ontario, L4C 5H2, Canada.

[‡] Present address: Department of Chemical Engineering, Ohio University, 179 Stocker Center, Athens, OH 45701.

[§] Deceased.

[®] Abstract published in Advance ACS Abstracts, March 15, 1997.

Figure 1. Plot of $\ln\{[CF_3CH_2CHF_2]_0/[CF_3CH_2CHF_2]_l\}$ against $\ln\{[CF_3-CHCIF]_0/[CF_3CHCIF]_l\}$, in which the slope gives the rate constant ratio $k(CF_3CH_2CHF_2+Cl)/k(CF_3CHCIF+Cl) = 2.55 \pm 0.30$.

of CF₃CH₂CHF₂ and a reference compound, CF₃CHClF (HCFC-124), in the UV photolysis of mixtures containing these two compounds and Cl₂ at 297 \pm K, and using the integrated relative rate equation:

$$\frac{\text{Ln}\{[CF_{3}CH_{2}CHF_{2}]_{0}/[CF_{3}CH_{2}CHF_{2}]_{t}\}}{\text{Ln}\{[CF_{3}CHCIF]_{0}/[CF_{3}CHCIF]_{t}\}} = \frac{k[CF_{3}CH_{2}CHF_{2} + CI_{1}]_{t}}{k[CF_{3}CH_{2}CHF_{2} + CI_{1}]_{t}}$$

In the presence of O₂, CF₃O radicals may be produced in the reaction system as an important intermediate product. These CF₃O radicals may initiate reactions in competition with the Cl atoms and confound the rate constant measurement. To avoid the possible side reactions of CF₃CH₂CHF₂ and CF₃CHClF with CF₃O radicals,⁸ the experiments were carried out in 700 Torr of N₂, using reactant mixtures containing CF₃CH₂CHF₂ (0.4–0.5 Torr), CF₃CHClF (0.4–0.5 Torr) and Cl₂ (2–3 Torr). A relative rate constant, k[CF₃CH₂CHF₂ + Cl]/k[CF₃CHClF + Cl], was derived to be 2.55 ± 0.30 (2 σ) by linear regression of Ln{[CF₃CH₂CHF₂]₀/[CF₃CH₂CHF₂]₁} against Ln{[CF₃CHClF]₀/[CF₃CHClF]₁}, as presented in Figure 1. Placed on an absolute basis, the rate constant is k[CF₃CH₂CHF₂ + Cl] = (6.9 ± 0.8) × 10⁻¹⁵ (2 σ) cm³ molecule⁻¹ s⁻¹ using k[CF₃CHClF + Cl] = 2.7 × 10⁻¹⁵ cm³ molecule⁻¹ s⁻¹ as the reference.⁹ The uncertainty reported above refers only to experimental error.

2. Reactions in He. The Cl atom abstracts an H atom from $CF_3CH_2CHF_2$, leaving a radical site. In the absence of O₂, this radical site will be chlorinated by reaction with Cl₂. To establish the relative importance of central vs terminal H-atom abstraction for Cl + $CF_3CH_2CHF_2$ reactions, spectra were collected after UV irradiation of mixtures containing $CF_3CH_2CHF_2$ (0.4–0.7 Torr) and Cl₂ (3–4 Torr) diluted in He to 700 Torr. The absorbance spectra recorded in a typical run are illustrated in Figure 2. Parts A and B of Figure 2 correspond to the spectra recorded before and after 25 s photolysis of a mixture initially containing $CF_3CH_2CHF_2$ (0.5 Torr) and Cl₂ (3.4 Torr) in 700

Figure 2. Spectral data in the frequency region $500-1500 \text{ cm}^{-1}$ obtained from the photolysis of a mixture containing CF₃CH₂CHF₂ (0.5 Torr) and Cl₂ (3.4 Torr) in 700 Torr of He: (A) before irradiation; (B) after 25 s irradiation; (C) difference spectrum = $[(B) - (A)] \times 3$.

Figure 3. Plot of the CF₃CH₂CClF₂ yield against the CF₃CH₂CHF₂ conversion observed in 700 Torr of He. The slope gives the observed yield of CF₃CH₂CClF₂ to be 95% based on the conversion of CF₃CH₂-CHF₂.

Torr of He; Figure 2C is the difference spectrum [2B -2A], with the absorbance scale expanded by a factor of 3 for clarity. The identified products after irradiation of the mixtures were CF₃CH₂CClF₂ and HCl. The observed yield of CF₃CH₂CClF₂ is plotted as a function of the reactant conversion in Figure 3. The slope gives the percentage yield of CF₃CH₂CClF₂ to be 95%. The observation of CF₃CH₂CClF₂ as the predominant product is consistent with the occurrence of reaction 1a, H-atom

Figure 4. Spectral data in the frequency region $500-2500 \text{ cm}^{-1}$ obtained from the photolysis of a mixture containing CF₃CH₂CHF₂ (3 mTorr) and Cl₂ (0.5 Torr) in 700 Torr of air: (A) before irradiation; (B) after 3 min irradiation; (C) difference spectrum = [(B) - (A)].

abstraction from the terminal carbon producing $CF_3CH_2CF_2$ radical, followed by reaction with Cl_2 molecule, reaction 2.

$$CF_3CH_2CHF_2 + Cl \rightarrow CF_3CH_2CF_2 + HCl$$
 (1a)

$$CF_3CH_2CHF_2 + Cl \rightarrow CF_3CHCHF_2 + HCl$$
 (1b)

$$CF_3CH_2CF_2 + Cl_2 \rightarrow CF_3CH_2CClF_2 + Cl$$
 (2)

It is to be noted that $CF_3CHClCHF_2$ would be formed by a central H-atom abstraction producing CF_3CHCHF_2 radical, reaction 1b, followed by reaction 3.

$$CF_3CHCHF_2 + Cl_2 \rightarrow CF_3CHClCHF_2 + Cl$$
 (3)

After subtracting CF₃CH₂CClF₂ and HCl from Figure 2C, the residual spectrum showed IR peaks at 1281, 1217, and 1182 cm⁻¹, which are in the C–F stretching frequency range. If all the residual spectra are assigned to CF₃CHClCHF₂, a lower limit for the yield of CF₃CH₂CClF₂ and a higher limit for the yield of CF₃CHClCHF₂ are estimated to be 95% and 5%, respectively. In other words, at least 95% of the CF₃CH₂CHF₂ + Cl reactions proceed via terminal H-atom abstraction. Reactions via central H-atom abstraction, if they occur, account for no more than 5% of the total.

3. Reactions in Air. To determine the subsequent reaction pathways for $CF_3CH_2CF_2$ radical in the presence of O_2 , experiments were carried out in 700 Torr of air. Parts A and B of Figure 4 correspond to the spectra recorded before and after 3 min irradiation of a mixture initially containing $CF_3CH_2CHF_2$ (3 mTorr) and Cl_2 (500 mTorr) in 700 Torr of air; Figure 4C is the difference spectrum [4B – 4A]. As shown in Figure 4, the identified carbon-containing products were CO_2 , CF_2O , and CF_3 -OOOCF₃ (1290, 1252, and 1169 cm⁻¹).¹⁰ As reported by Wallington et al.,¹⁰ CF₃OOOCF₃ may be formed from the reaction of CF₃O and CF₃OO radicals. However, CF_3OOOCF_3 is unlikely to form in the troposphere since the concentrations of the CF₃O and CF₃OO would be very low. Under the

(A) CF₃CH₂CHF₂(0.6Torr)/Cl₂(0.5Torr)/Air(700Torr)

Figure 5. Spectral data in the frequency region $1500-2500 \text{ cm}^{-1}$ obtained from the photolysis of a mixture containing CF₃CH₂CHF₂ (0.6 Torr) and Cl₂ (0.5 Torr) in 700 Torr of air: (A) before irradiation; (B) after 3 min irradiation; (C) difference spectrum = $[(B) - (A)] \times 1.5$.

experimental conditions, no H-containing products, except inorganic HCl and HF, were identified. Because of the slow reaction rate of CF₃CH₂CHF₂ + Cl ($k = 6.9 \times 10^{-15}$ cm³ molecule⁻¹ s⁻¹), it is quite possible that some active Hcontaining intermediate products were formed in the system and then scavenged by the faster secondary reactions with Cl atoms. For example, CF₃CHO is a possible product and its reaction rate with Cl atoms ($k = 2.7 \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹)¹¹ is more than 400 times faster than that of CF₃CH₂CHF₂ with Cl.

To limit the possible secondary reactions of the intermediate products with Cl atoms, the experiments were also carried out with high reactant concentrations and at low reactant conversions. That is, the initial concentrations of CF₃CH₂CHF₂ and Cl₂ were both 500–1000 mTorr, and the conversions of CF₃CH₂CHF₂ were a few percent. Parts A and B of Figure 5 correspond to the spectra recorded before and after 3 min irradiation of a mixture initially containing CF₃CH₂CHF₂ (600 mTorr) and Cl₂ (500 mTorr) in 700 Torr of air; Figure 5C is the difference spectrum [5B – 5A]. As shown in Figure 5, no CF₃CH₂CClF₂ was identified above the detection limit (0.02 mTorr). Thus, in 700 Torr of air, the Cl₂ reaction with the initially formed CF₃CH₂CF₂ radicals, reaction 2, was negligible, while O₂ addition, reaction 4, is the predominant channel.

$$CF_3CH_2CF_2 + O_2 (+M) \rightarrow CF_3CH_2CF_2OO (+M)$$
 (4)

The identified carbon-containing products were CF₂O (1944, 1243, and 774 cm⁻¹), CO₂, CF₃CHO (2864, 1787, and 706 cm⁻¹),^{12,13} CF₃C(O)OH (3584 and 1827 cm⁻¹),¹⁴ CF₃OH (3664 cm⁻¹),^{8,15} and a trace amount of CO. The product yields are plotted as a function of the conversion of CF₃CH₂CHF₂ in Figure 6. Since the initial concentration of CF₃CH₂CHF₂ was very high, all the IR peaks of fundamentals were saturated, and those of overtones and combinations were too weak to be sensitive enough to a few percent change of the reactant. Thus, the reactant conversions in Figure 6 were estimated from the observed yields of total products. The concentrations of

Figure 6. Plots of product yields against conversion of $CF_3CH_2CHF_2$. Data were obtained from experiments carried out by the photolysis of mixtures initially containing $CF_3CH_2CHF_2$ and Cl_2 (500–1000 mTorr) in 700 Torr of air.

CF₃OH were calculated from the IR absorbance σ (3664 cm⁻¹) = 2.4 × 10⁻³ mTorr⁻¹ M^{-1.8}

A small IR peak was observed at 3628 cm⁻¹, which could be the O–H stretching of a ROOH type molecule produced by an ROO + HOO \rightarrow ROOH + O₂ reaction. By comparison with the IR absorbance of the O–H stretching of CH₃OOH and C₂H₅OOH, acquired previously in our laboratory, the yield of this ROOH type product is estimated to be less than 2%.

As shown in Figure 6, the yield of observed CF₃CHO (55– 25%) decreased with increasing CF₃CH₂CHF₂ conversion, indicating that loss of CF₃CHO to secondary reactions is important. The main secondary reaction of CF₃CHO was expected to be with Cl atoms, so the observed yield of CF₃-CHO could be corrected by the method suggested by Atkinson et al.,¹⁶ using the rate constants $k(CF_3CH_2CHF_2 + Cl)$ and $k(CF_3CHO + Cl)$ noted above. The yields of CF₃CHO before and after correcting for the secondary reaction with Cl atoms are plotted against the conversion of CF₃CH₂CHF₂ in Figure 7. The plot after correction is linear, with a slope of 0.97 ± 0.05, which strongly suggests that CF₃CHO was a main primary product and that degradation of CF₃CH₂CF₂OO radicals produced a stoichometric amount of CF₃CHO. This result is consistent with reactions 5–9 following reaction 4.

$$2CF_3CH_2CF_2OO \rightarrow 2CF_3CH_2CF_2O + O_2$$
 (5)

$$CF_3CH_2CF_2O (+M) \rightarrow CF_3CH_2 + CF_2O (+M)$$
 (6)

$$CF_3CH_2 + O_2 (+M) \rightarrow CF_3CH_2OO (+M)$$
(7)

$$2CF_3CH_2OO \rightarrow 2CF_3CH_2O + O_2 \tag{8}$$

$$CF_3CH_2O + O_2 \rightarrow CF_3CHO + HOO \tag{9}$$

The self-reactions of CF_3CH_2OO radicals may proceed via two possible channels, reactions 8 and 10. The absence of IR peaks assignable to CF_3CH_2OH suggests that reaction 10 is of

Figure 7. Yields of CF₃CHO against conversion of CF₃CH₂CHF₂. Symbols \bigcirc , \bigtriangledown , and \blacktriangle express yields of CF₃CHO observed from experiments, corrected for the secondary reaction with Cl atoms and derived from the sum of observed percentage yields of CF₃CHO, CO₂, and CF₃C(O)OH, respectively.

minor importance and reaction 8 is the main degradation channel for CF_3CH_2OO radicals.

$$2CF_3CH_2OO \rightarrow CF_3CH_2OH + CF_3CHO + O_2$$
 (10)

Unimolecular dissociation producing CF_3 radicals and CH_2O was expected to be a degradation channel for CF_3CH_2O radicals. However, no CH_2O was observed; our detection limit for CH_2O is about 0.01 mTorr. The unimolecular dissociation, reaction 11, was thus negligible.

$$CF_3CH_2O(+M) \rightarrow CF_3 + CH_2O(+M)$$
 (11)

Atkinson and Carter summarized the thermodynamic and kinetic properties of a series of alkoxy radicals and introduced an empirical method for assessing the relative importance of reactions 9 and 11 under atmospheric conditions.¹⁷ This method utilizes the differences in the enthalpies of reactions, $\Delta(\Delta H) =$ $(\Delta H_{11} - \Delta H_9)$, where ΔH_{11} and ΔH_9 refer to enthalpies of reactions 11 and 9, respectively. For $\Delta(\Delta H) < 40$ kcal/mol, the unimolecular dissociation (11) dominates over O₂ reaction, reaction 9, while the opposite is true for $\Delta(\Delta H) > 43$ kcal/ mol, at room temperature and atmospheric pressure. $\Delta(\Delta H)$ is calculated to be 47.2 kcal/mol for CF₃CH₂O radical. In the calculation, the value for the enthalpy of formation of CF3CHO was estimated to be -187.5 kcal/mol by using the empirical AM1 method,¹⁸ while those for other products of reactions 9 and 11 were found from the literature.¹⁹ This estimation supports that the O₂ reaction with the CF₃CH₂O radicals producing CF₃CHO and HOO radicals, reaction 9, dominates over the unimolecular dissociation, reaction 11, and is consistent with the previous report by Nielsen et al. that >99.3% of the CF₃CH₂O radicals react with O₂ to produce CF₃CHO.²⁰ Another possible decomposition channel for CF3CH2O radical is elimination of a hydrogen atom, reaction 12.²¹ Because the HOO radical is about 50 kcal/mol more stable than the H atom,¹⁹ reaction 9 must be thermodynamically favored over reaction

12. Thus, CF₃CH₂O radical mainly degrades via reaction 9 under atmospheric conditions.

$$CF_3CH_2O(+M) \rightarrow CF_3CHO + H(+M)$$
 (12)

Based on the above-discussed reaction mechanism, the yield of CF₂O should be equal to that of CF₃CHO. Actually, the observed percentage yield of CF₂O was about 30–60% higher than that of CF₃CHO and increased with the reactant conversion. Thus, part of the observed CF₂O was probably produced by reactions subsequent to the CF₃CHO + Cl reaction. The reaction of CF₃CHO with Cl has been studied by several groups^{11,22} and is expected to produce CF₃CO radicals, reaction 13.

$$CF_3CHO + Cl \rightarrow CF_3CO + HCl$$
 (13)

The unimolecular dissociation of CF₃CO radicals leading to CO and CF₃ radicals was confirmed to be a minor channel by the result that less than 2% yield of CO was identified under the experimental conditions. Wallington et al.²² studied the degradation mechanism of CF₃CO radicals in the presence of 27 mTorr of O₂ and reported that 84% of the CF₃CO radicals reacted with O₂ forming CF₃C(O)OO radicals, reaction 14, and 16% decomposed to give CO and CF₃ radicals. Because of the presence of 140 Torr of O₂, reaction 14 is the most likely fate of CF₃CO radicals at our experimental conditions, and thus at atmospheric conditions.

$$CF_3CO + O_2 (+M) \rightarrow CF_3C(O)OO + (+M)$$
 (14)

The identified product yields of CO₂ (40–60%), CF₃C(O)OH (5–8%), CF₃OH (10–30%) changed with the reactant conversion. They and part of the CF₂O were formed via a series of reactions which follow reaction 14.

$$2CF_3C(0)OO \rightarrow 2CF_3C(0)O + O_2$$
 (15)

$$CF_3C(O)O(+M) \rightarrow CF_3 + CO_2(+M)$$
 (16)

$$CF_3C(O)O + HOO \rightarrow CF_3C(O)OH + O_2$$
 (17)

$$CF_3 + O_2 (+M) \rightarrow CF_3OO (+M)$$
(18)

$$2CF_3OO \rightarrow 2CF_3O + O_2 \tag{19}$$

$$CF_3O + HOO \rightarrow CF_3OH + O_2$$
 (20)

$$CF_3O + RH \rightarrow CF_3OH + R$$
 (21)

$$CF_3OH + wall \rightarrow CF_2O + HF + wall$$
 (22)

Scollard et al. studied the degradation mechanisms of a series $CX_3C(O)O$ radicals (X = Cl and F) and reported that the radicals mainly dissociate to give CO₂ and CX₃ radicals.¹¹ In the present experiments, the observed yield of CO₂ was about 8 times larger than that of CF₃C(O)OH. Thus, the unimolecular dissociation of CF₃C(O)O radicals leading to CO₂ and CF₃ radicals, reaction 16, dominates over the reaction with HOO radicals, reaction 17. The sum of observed percentage yields of CF₃CHO, CO₂, and CF₃C(O)OH is very similar to the yield of CF₃CHO after correcting for the secondary reaction with Cl atoms, as shown in Figure 7. This result is consistent with the above reaction mechanism. Since the lifetime for the unimolecular decomposition for CF₃C(O)O is 8.3×10^{-6} s as determined by Wallington et al. at 760 Torr,²³ under atmospheric conditions, the rate for reaction 17 forming CF₃C(O)OH (trifluoroacetic acid) would

be negligible compared to reaction 16. Using a global averaged value for HO₂ concentration of 10^9 molecule cm^{-3 24} and assuming that the rate constant for reaction 17 was gas kinetic, the rate of unimolecular decomposition, reaction 16, would be at 5 orders of magnitude faster than the formation of trifluo-roacetic acid, reaction 17. Therefore, the trifluoroacetic acid formed in these experiments resulted from reactions subsequent to the secondary reaction of Cl atoms with CF₃CHO, reaction 13, and would not be an expected product from the atmospheric degradation of 1,1,3,3-pentafluoropropane, HFC-245fa.

In this study, the CF₃CH₂O radicals were produced by the self-reaction of two CF₃CH₂OO radicals, reaction 15, which is a nearly thermoneutral process. Recent work by Wallington et. al. indicated that when a similar alkoxy radical, CF₃CFHO, was generated by a more exothermic reaction between CF₃-CFHOO and NO (reaction 23), a "hot" CF₃CFHO radical was produced, and compared to the thermalized radical (reaction 27), the extent of unimolecular decomposition (reaction 24) was increased over the competing hydrogen abstraction reaction (reaction 25).²⁵

 $CF_3CHFOO + NO \rightarrow CF_3CHFO^* + NO_2$ (23)

$$CF_3CHFO^* + (M) \rightarrow CF_3 + CH(O)F + (M)$$
 (24)

$$CF_3CHFO + HOO \rightarrow CF_3C(O)F + O_2$$
 (25)

 $CF_3CHFO^*(+M) \rightarrow CF_3CHFO + (M)$ (26)

$$CF_3CHFO (+M) \rightarrow CF_3 + CH(O)F + (M)$$
 (27)

Bevilacqua et al.²⁶ and Pultau et al.²⁷ have also studied the reaction of NO with fluoroperoxy radicals. Comparing the reactivity of the fluoroalkoxy radicals produced by the reaction of NO with the precursor fluoroperoxy radicals, the results indicated that the CF₃CHFO radical did undergo further carbon–carbon bond cleavage which is not inconsistent with the results of Wallington et al.,²⁵ whereas the CF₃CH₂O did not undergo further decomposition. Therefore, based on results from these two studies, it is unlikely that there would have been any significant unimolecular decomposition of CF₃CH₂O, reaction 11, even if the CF₃CH₂O radicals were produced in this study by the reaction of NO with the peroxy radical, CF₃CH₂OO.

Conclusion

Our investigation of Cl atom initiated oxidation of CF₃CH₂-CHF₂ (HFC-245fa) in 700 Torr of air suggests that terminal H abstraction producing CF3CH2CF2 radicals will be the predominant channel during the tropospheric oxidation of CF3CH2CHF2 by OH radicals. At atmospheric conditions, self-reactions (reactions 5, 8, 15, and 19) of the peroxy radicals produced via the subsequent reactions of CF₃CH₂CF₂ radicals are negligible. By analogy to the behavior of other peroxy radicals,⁹ it is expected that the rate constants of NO with the peroxy radicals involved in this study are larger than 5×10^{-12} cm³ molecule⁻¹ s⁻¹. With an estimated background tropospheric NO concentration of about 1×10^9 molecule cm⁻³,^{28,29} the lifetimes of these peroxy radicals with respect to NO reactions are estimated to be 2-3 min. Thus, at atmospheric conditions, reactions with NO producing the corresponding alkoxy radicals are likely to be the main degradation channels for these peroxy radicals. The present study has shown that the fate of CF3CH2CF2O radicals is unimolecular dissociation leading to CF₂O and CF₃CH₂ radicals. The observation of CF₃CHO as a main primary product and the absence of CH2O suggest that the atmospheric

fate of CF_3CH_2O radicals is to react with O_2 producing CF_3 -CHO and HOO radicals, while the unimolecular dissociation leading to CF_3 and CH_2O is negligible. The atmospheric degradation of CF_3CHO will produce CO_2 and CF_3 radicals as the main products.

The atmospheric fate of CF₃ radicals has been well studied.^{5,30} The main terminating processes will be reaction with NO and CH₄ which produce, respectively, CF₂O and CF₃OH.^{8,31,32} The most probable fate for both CF₂O and CF₃OH would be uptake by cloud, rain, or ocean water to yield CO₂ and HF.³³ Consequently, no long-term decomposition products such as trifluoroacetic acid (TFA) are expected to result from the atmospheric degradation of CF₃CH₂CHF₂(HFC-245fa).

Acknowledgment. We thank AlliedSignal and British Gas/ Consumers Gas for financial support. The late H. Niki was the holder of the British Gas/Consumers Gas/AES Industrial Research Chair in Atmospheric Chemistry. We also thank Dr. M. Van Der Puy from the Buffalo Research Laboratory of AlliedSignal for synthesizing CF₃CH₂CC1F₂, and Drs. O. Melo and G. Harris for critical review of the manuscript.

References and Notes

(1) "Scientific Assessment of Stratospheric Ozone". World Meteorological Organization Global Ozone Research and Monitoring Project, Report No. 20; 1989, Vol. I.

(2) Edney, E. O.; Gay, B. W.; Driscoll, D. J. J. Atmos. Chem. 1991, 12, 105.

(3) Wallington, T. J.; Hurley, M. D.; Ball, J. C.; Kaiser, E. W. Environ. Sci. Technol. **1992**, 26, 1318.

(4) Nielsen, O. J.; Ellerman, T.; Sehested, J.; Bartkiewicz, E.; Wallington, T. J.; Hurley, M. D. Int. J. Chem. Kinet. **1992**, 24, 1009.

(5) Wallington, T. J.; Schneider, W. F.; Worsnop, D. R.; Nielsen, O. J.; Schested, J.; Debruyn, W. J.; Shorter, J. A. *Environ. Sci. Technol.* **1994**, 28, 320 (and references therein).

(6) (a) "Montreal Protocol on Substances That Deplete the Ozone Layer". UNEP, 1994 Report of the Flexible and Rigid Foams Technical Options Committee; Chapter III: Polyurethane Foams. (b) Knopeck, G. M.; Parker, R. C.; Richard, R. G.; Shankland, I. R. *Proc. SPI/C 48th Annu. Conf.* **1993**, 465. (c) Knopeck, G. M., Parker, R. C.; Richard, R. G.; Shankland, I. R. *Proc. 35th Annu. Polyurethane Tech./Marketing Conf., Oct. 9–12*, **1994**, 115.

(7) Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. J. Mol. Struct. 1980, 59, 1.

(8) Chen, J.; Zhu, T.; Niki, H. Geophys. Res. Lett. 1992, 19, 2215.

(9) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. "Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling", Evaluation No. 11, NASA and JPL, December, 15, 1994. (10) Wallington, T. J.; Schested, J.; Dearth, M. A.; Hurley, M. D. J. Photochem. Photobiol. A: Chem. 1993, 70, 5.

(11) Scollard, D. J.; Treacy, J. J.; Sidebotton, H. W.; Balestra-Garcia, C.; Laverdet, G.; LeBras, G.; MacLeod, H.; Teton, S. J. Phys. Chem. **1993**, 97, 4683.

(12) Francisco, J. S.; Williams, I. M. Mol. Phys. 1992, 76, 1433.

(13) Berney, C. V. Spectrochim. Acta. 1969, 25A, 793.

(14) Redington, R. L.; Lin, K. C. Spectrochim. Acta. 1971, 27A, 2445.

(15) Sehested, J.; Wallington, T. J. *Environ. Sci. Technol.* 1993, 27, 1.
(16) Atkinson, R.; Aschmann, S. M.; Carter, W. P. L.; Winer, A. M.;

Pitts, J. N. Jr. J. Phys. Chem. 1982, 86, 4563.

(17) Atkinson, R.; Carter, W. J. Atmos. Chem. 1991, 13, 195.

(18) Dewar, M. J. S.; Zoebisch, E. G.; Heuly, E. F. J. Am. Chem. Soc. 1985, 107, 3902.

(19) Data from the following publications were used for the calculations:
(a) Shum, L. G. S.; Benson, S. W. J. Phys. Chem., 1983, 87, 3479.
(b) Cox, J. D., Wagman, D. D., Medvedev, V. A., Eds. CODATA. Key Values for Thermodynamic; Hemisphere Publishing Corp.: New York, 1989.
(c) Handbook of Chemistry and Physics, 75th ed.; Lide, D. R., Ed.; CRC Press: Boca Raton, FL, 1995.

(20) Nielsen, O. J.; Gamborg, E.; Sehested, J.; Wallington, T. J.; Hurley, M. D.; *J. Phys. Chem.* **1994**, 98, 9518.

(21) Francisco, J. S.; Li, Z.; Bradley, A.; Knight, A. E. W. Chem. Phys. Lett. 1993, 214, 77.

(22) Wallington, T. J.; Schested, J.; Nielsen, O. J. Chem. Phys. Lett. 1994, 226, 563.

(23) Wallington, T. J.; Hurley, M. D; Nielsen, O. J.; Sehested, J.; J. Phys. Chem. 1994, 98, 5686.

(24) Atkinson, R. In "Scientific Assessment of Stratospheric Ozone: 1989", World Meteorological Organization Global Ozone Research and Monitoring Project; Report No. 20, Volume II, Appendix: AFEAS Report, Geneva, Switzerland, 1989; p 167.

(25) Wallington, T. J.; Hurley, M. D; Fracheboud, J. M.; Orlando, J. J.; Tyndall G. S.; Sehested, J.; Møgelberg, T. E.; Nielsen, O. J.; *J. Phys. Chem.* **1996**, *100*, 18116.

(26) Bevilacqua, T. J., Hanson, D. R.; Jensen, N. R.; Howard, C. J. In "Kinetics and Mechanisms for the Reactions of Halogenated Organic Compounds in the Troposphere", STEP-HALOCIDE/AFEAS Workshop, Dublin, Ireland, March 23–25, 1993; p 163.

(27) Pultau, V.; Peeters, J. In "Kinetics and Mechanisms for the Reactions of Halogenated Organic Compounds in the Troposphere", STEP-HALOCIDE/AFEAS Workshop, Dublin, Ireland, March 23–25, 1993; p 34.

(28) Logan, J. A. J. Geophys. Res. 1983, 88, 10785.

(29) Bollinger, M. J.; Hahn, C. J.; Parrish, D. D.; Murphy, P. C.; Albrittom, D. L.; Fehsenfeld, F. C. J. Geophys. Res. **1984**, 89, 9623.

(30) Niki, H.; Chen J.; Young, V. *Res. Chem. Intermed.* 1994, 20, 277.
(31) Barone, S. B.; Turnipseed, A. A.; Ravishankara, A. R. *J. Phys. Chem.* 1994, 98, 4594.

(32) Turnipseed, A. A.; Barone, S. B.; Ravishankara, A. R. J. Phys. Chem. 1994, 98, 4604.

(33) "Scientific Assessment of Ozone Depletion"; World Meteorological Organization Global Research and Monitoring Project, Report No. 37, 1994; Chapter 12: Atmospheric Degradation of Halocarbon Substitutes; p 12.14.